

ISO 11359-1/-2

CELANEX® 2000FC

high flow, unfilled PBT polymer grade, for use in food contact applications

Celanex 2000FC is an unreinforced polybutylene terephthalate (PBT) with a good balance of mechanical properties and processability for use in food contact applications.

Celanex 2000FC is a high flow material suitable for homogenous and bicomponent spunbond fiber applications as well as injection molding applications with food contact compliance.

Coeff. of linear therm. expansion, normal

Product information			
Part Marking Code	> PBT <		ISO 11469
Rheological properties			
Melt volume-flow rate	65	cm ³ /10min	ISO 1133
Melt mass-flow rate	70	g/10min	ISO 1133
Temperature	250	°C	
Load	2.16	kg	
Melt mass-flow rate, Temperature	250	°C	
Melt mass-flow rate, Load	2.16	kg	
Typical mechanical properties			
Tensile Modulus	2700	MPa	ISO 527-1/-2
Yield stress, 50mm/min	60	MPa	ISO 527-1/-2
Yield strain, 50mm/min	4	%	ISO 527-1/-2
Nominal strain at break	30	%	ISO 527-1/-2
Strain at break, 50mm/min	30		ISO 527-1/-2
Flexural Modulus	2600		ISO 178
Flexural Strength		MPa	ISO 178
Charpy impact strength, 23°C		kJ/m ²	ISO 179/1eU
Charpy impact strength, -30°C		kJ/m ²	ISO 179/1eU
Charpy notched impact strength, 23°C		kJ/m ²	ISO 179/1eA
Charpy notched impact strength, -30°C		kJ/m ²	ISO 179/1eA
Izod notched impact strength, 23°C		kJ/m ²	ISO 180/1A
Hardness, Rockwell, M-scale	75		ISO 2039-2
Thermal properties			
Melting temperature, 10 °C/min	225	°C	ISO 11357-1/-3
Glass transition temperature, 10°C/min	60	°C	ISO 11357-1/-3
Temp. of deflection under load, 1.8 MPa	55	°C	ISO 75-1/-2
Temp. of deflection under load, 0.45 MPa	155	°C	ISO 75-1/-2
Vicat softening temperature, 50°C/h, 50N	190	°C	ISO 306
Coeff. of linear therm. expansion, parallel		E-6/K	ISO 11359-1/-2
	400	- 0 /l /	100 44050 440

100 E-6/K

(+) 18816996168 Ponciplastics.com

CELANEX® 2000FC

Flammability

Oxygen index 22 % ISO 4589-1/-2

Electrical properties

Relative permittivity, 100Hz	4		IEC 62631-2-1
Relative permittivity, 1MHz	3.5		IEC 62631-2-1
Dissipation factor, 100Hz	15	E-4	IEC 62631-2-1
Dissipation factor, 1MHz	200	E-4	IEC 62631-2-1
Volume resistivity	>1E13	Ohm.m	IEC 62631-3-1
Surface resistivity	>1E15	Ohm	IEC 62631-3-2
Electric strength	23	kV/mm	IEC 60243-1
Comparative tracking index	PLC 0	PLC	UL 746A

Other properties

Humidity absorption, 2mm	0.25 %	Sim. to ISO 62
Water absorption, 2mm	0.45 %	Sim. to ISO 62
Density	1310 kg/m ³	ISO 1183

Injection

Drying Temperature	120 - 130	$^{\circ}\mathrm{C}$
Drying Time, Dehumidified Dryer	4 - 6	h
Processing Moisture Content	0.02	%
Max. mould temperature	65 - 90	°C
Injection speed	medium-fast	

Characteristics

Food contact FDA 21 CFR

Additional information

Injection molding

Rear Temperature 450-470(230-240) deg F (deg C)
Center Temperature 460-480(235-250) deg F (deg C)
Front Temperature 470-500(240-260) deg F (deg C)
Nozzle Temperature 480-500(250-260) deg F (deg C)
Melt Temperature 460-500(235-260) deg F (deg C)
Mold Temperature 150-200(65-93) deg F (deg C)
Back Pressure 0-50 psi
Screw Speed Medium

Screw Speed Medium Injection Speed Fast

Injection speed, injection pressure and holding pressure have to be optimized to the individual article geometry. To avoid material degradation during processing low back pressure and minimum screw speed have to be used. Overheating of the material has to be avoided, in particular for flame retardant grades. Up to 25%

CELANEX® 2000FC

clean and dry regrind may be used.

Processing Texts

Pre-drying To avoid hydrolytic degradation during processing, CELANEX resins have to be

dried to a moisture level equal to or less than 0.02%. Drying should be done in a dehumidifying hopper dryer capable of dewpoints <-40°F (-40°C) at 250°F

(121°C) for 4 - 6 hours.

Longer pre-drying times/storage For subsequent storage of the material in the dryer until processed (<= 60 h) it is

necessary to lower the temperature to 100° C.

Injection molding Rear Temperature 450-470(230-240) deg F (deg C)

Center Temperature 460-480(235-250) deg F (deg C) Front Temperature 470-500(240-260) deg F (deg C) Nozzle Temperature 480-500(250-260) deg F (deg C) Melt Temperature 460-500(235-260) deg F (deg C) Mold Temperature 150-200(65-93) deg F (deg C)

Back Pressure 0-50 psi Screw Speed Medium

Injection Speed Fast

Injection speed, injection pressure and holding pressure have to be optimized to the individual article geometry. To avoid material degradation during processing low back pressure and minimum screw speed have to be used. Overheating of the material has to be avoided, in particular for flame retardant grades. Up to 25%

clean and dry regrind may be used.

Injection molding Preprocessing To avoid hydrolytic degradation during processing, CELANEX resins have to be

dried to a moisture level equal to or less than 0.02%. Drying should be done in a dehumidifying hopper dryer capable of dewpoints $<-30\,^{\circ}F$ (-34 $^{\circ}C$) at 250 $^{\circ}F$

(121°C) for 4 hours.